A new paper published in the journal Geology suggests that it may be possible to seed carbon-rich environments with bacteria to create natural gas reservoirs. The study may also help explain high levels of methane in the atmosphere that occurred between ice ages, a trend recorded in ice cores taken from Greenland and Antarctica.
Read more in ScienceDaily: ‘Natural Gas Formation By Bacteria Linked To Climate Change And Renewable Energy’
The original paper is here:
Geology
Article: pp. 139–142 Volume 36, Issue 2 (February 2008)
A new model linking atmospheric methane sources to Pleistocene glaciation via methanogenesis in sedimentary basins
M.J. Formolo1, J.M. Salacup1, S.T. Petsch1, A.M. Martini2, and K. Nüsslein3
1. Department of Geosciences, University of Massachusetts–Amherst, Amherst, Massachusetts 01003, USA, 2. Department of Geology, Amherst College, Amherst, Massachusetts 01002, USA, 3. Department of Microbiology, University of Massachusetts–Amherst, Amherst, Massachusetts 01003, USA
Methane (CH4) is an important greenhouse gas and amplifier of climate change. However, the causes of atmospheric CH4 variations over glacial-interglacial cycles remain unresolved. We propose that microbial methanogenesis along the shallow margins of sedimentary basins provides a source of atmospheric CH4 temporally connected with both advance and retreat of continental ice sheets. Extensive biodegradation of hydrocarbons in the Antrim Shale Formation, Michigan, United States, is associated with an active subsurface consortium of fermentative and methanogenic microorganisms. This activity was initially stimulated when saline formation waters were diluted by meltwater derived from overriding Pleistocene ice sheets. During glaciation, CH4 produced by this community accumulated in the shale at a rate of 1 Tg CH4 per 1000 yr as a result of ice coverage and increased hydrostatic pressure. We estimate that at present the Antrim Shale contains only 12%–25% of the cumulative mass of CH4 generated in the shale over the Pleistocene, indicating that CH4 that had accumulated during glaciation was subsequently released following ice-sheet retreat. While release from the Antrim Shale represents only a small part of the global CH4 budget, when extended to other glaciated sedimentary basins, subsurface methanogenesis may generate a substantial, previously unrecognized source of atmospheric CH4 during deglaciation.
Keywords: methane, biogeochemistry, black shale, glaciation
Louis Hissink says
Tommy Gold suggested a similar mechanism for the production of Abiotic methane from the subcrust.
Amazing how ideas get around. Next we will read that this is impossible, via a never Endering Story, with Luke, the improphetable adding his bit.
Oh, and Henry Thornton has ceased posting my articles, for PC reasons I believe. Havn’t received any explanations, just a thunderous silence.
Eyrie says
Louis,
I thought Tommy Gold said the methane was primordial and trapped in the Earth when it formed and then being lighter than rocks and iron, made its way to the surface.
Looking at that abstract they think the methane was formed by biodegradation of shale. Not at all the same thing.
I don’t have any problem with Tommy Gold’s abiotic oil theory, BTW. There are lots of hydrocarbons on Titan, comets are covered in black tarry substances, there are carbonaceous chondrite meteorites and all that hydrogen at the lunar poles? I’m betting that isn’t all water ice but at least some of it is hydrocarbons.
James Mayeau says
I don’t understand why it would make a difference. The atmosphere still has to obey the law of entropy. Heat can never be reflected back from a cooler substance (GHG, methane, co2, what have you) toward a warmer source (the ground).
Helen Mahar says
Louis, all is forgiven. Henry has given you a cuddle. Good article, enjoyed it.